# Constraints on Ceres' internal structure from the Dawn gravity and shape data

Caltech Yuk Yung Seminar 21 February 2017

Anton I. Ermakov<sup>1,2</sup> (eai@caltech.edu)

Ryan S. Park<sup>1</sup>, Roger R. Fu<sup>3</sup>,

Maria T. Zuber<sup>1</sup> and the Dawn team

<sup>1</sup>Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

<sup>2</sup>Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA
<sup>3</sup>Lamont-Doberty Earth Observatory, Earth Institute, Columbia University, Palicades, NV









# Shape models

Geographic grid



# Shape models

Geographic grid





Polyhedral model

# **Shape models**

Geographic grid





Polyhedral model

- > Spherical harmonic expansion
  - set of orthogonal functions on a sphere



## **Gravity models**

Spherical harmonics

$$U(r,f,I) = \frac{GM}{r} \hat{\mathbf{e}}^{\dot{\mathbf{f}}} + \hat{\mathbf{e}}^{\dot{\mathbf{f}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}$$

**U** – gravitational potential

 $\varphi$  – latitude

 $\lambda$  – longitude

*r* – radial distance

*n* – degree

*m* – order



## **Gravity models**

Spherical harmonics

$$U(r,f,I) = \frac{GM}{r} \hat{\mathbf{e}}^{\dot{\mathbf{f}}} + \hat{\mathbf{e}}^{\dot{\mathbf{f}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}}^{\dot{\mathbf{e}}}_{\dot{\mathbf{e}}} \hat{\mathbf{e}$$

**U** – gravitational potential

 $\varphi$  – latitude

 $\lambda$  – longitude

*r* – radial distance

*n* – degree

*m* – order



Mascons



## Gravity and topography in spherical harmonics

## Shape radius vector

## **Gravitational** potential

## **Power Spectral Density**

$$S_n^{gg} = \mathop{\mathring{o}}_{m=0}^n \frac{C_{nm}^2 + S_{nm}^2}{2n+1}$$

topography

$$S_n^{gg} = \mathop{\mathring{o}}_{m=0}^n \frac{C_{nm}^2 + S_{nm}^2}{2n+1}$$

$$S_n^{tt} = \mathop{\mathring{o}}_{m=0}^n \frac{A_{nm}^2 + B_{nm}^2}{2n+1}$$

$$S_n^{tt} = \mathop{\mathring{o}}_{m=0}^n \frac{A_{nm}^2 + B_{nm}^2}{2n+1}$$

$$S_n^{gt} = \mathop{\mathring{o}}_{m=0}^n \frac{A_{nm}C_{nm} + B_{nm}S_{nm}}{2n+1}$$

gravity-topography cross power

- In hydrostatic equilibrium
  - Surfaces of constant density, pressure and potential coincide
  - No shear stresses

$$\rho = \rho(r)$$
,  $\omega$ 

$$ho = 
ho(r), \omega$$

$$\rho = \rho(r)$$
,  $\omega$ 





In hydrostatic equilibrium

$$\rho = \rho(r)$$
,  $\omega$ 





Not in hydrostatic equilibrium

$$\rho = \rho(r)$$
,  $\omega$ 



# Isostasy



### Isostatic equilibrium:

- Equal weight of crustal columns at the depth of compensation
- Deviatoric stresses
   within the
   isostatically
   compensated layer
   are minimized

# **Gravity anomalies**

Free-air anomaly

$$\sigma_{\mathsf{FA}} = \sigma_{\mathsf{obs}} - \sigma_{\mathsf{model}}$$

$$\sigma_{\text{model}} =$$
 gravity of hydrostatic figure



## **Gravity anomalies**

Free-air anomaly

$$\sigma_{\mathsf{FA}} = \sigma_{\mathsf{obs}} - \sigma_{\mathsf{model}}$$

$$\sigma_{\text{model}} =$$
 gravity of hydrostatic figure



Bouguer anomaly

$$\sigma_{\mathsf{BA}} = \sigma_{\mathsf{obs}} - \sigma_{\mathsf{model}}$$

$$\sigma_{\mathsf{model}} =$$

gravity of shape assuming  $\rho$ 



# **Gravity anomalies**

Free-air anomaly

$$\sigma_{\mathsf{FA}} = \sigma_{\mathsf{obs}} - \sigma_{\mathsf{model}}$$

$$\sigma_{\text{model}} =$$
 gravity of hydrostatic figure



Bouguer anomaly

$$\sigma_{\mathsf{BA}} = \sigma_{\mathsf{obs}} - \sigma_{\mathsf{model}}$$

$$\sigma_{
m model}$$
 =

gravity of shape assuming  $\rho$ 

Isostatic anomaly

$$\sigma_{\mathsf{IA}} = \sigma_{\mathsf{obs}} - \sigma_{\mathsf{model}}$$

*h* – depth of

compensation

$$\sigma_{\text{model}} = \begin{cases} \text{gravity assuming} \\ \text{isostasy for } \rho_1, \rho_2, h \end{cases}$$

# Why Ceres?

- Largest body in the asteroid belt
- Low density implies high volatile content
- Conditions for subsurface ocean
- Much easier to reach than other ocean worlds

#### **Ceres location in the asteroid belt**



#### What did we know before Dawn

#### Castillo-Rogez and McCord 2010

Ceres accreted as a mixture of ice and rock just a few My after the condensation of Calcium Aluminum-rich Inclusions (CAIs), and later differentiated into a water mantle and a mostly anhydrous silicate core.

#### What did we know before Dawn

#### Castillo-Rogez and McCord 2010

Ceres accreted as a mixture of ice and rock just a few My after the condensation of Calcium Aluminum-rich Inclusions (CAIs), and later differentiated into a water mantle and a mostly anhydrous silicate core.

#### Zolotov 2009

Ceres formed relatively late from planetesimals consisting of hydrated silicates.

## What did we know before Dawn

#### Castillo-Rogez and McCord 2010

Ceres accreted as a mixture of ice and rock just a few My after the condensation of Calcium Aluminum-rich Inclusions (CAIs), and later differentiated into a water mantle and a mostly anhydrous silicate core.

#### Zolotov 2009

Ceres formed relatively late from planetesimals consisting of hydrated silicates.

#### Bland 2013

If Ceres *does* contain a water ice layer, its warm diurnallyaveraged surface temperature ensures extensive viscous relaxation of even small impact craters especially near equator

## Evidence for viscous relaxation

 More general approach: study topography power spectrum



## Evidence for viscous relaxation

- More general approach: study topography power spectrum
- Power spectra for Vesta closely fits with the power law to the lowest degrees (λ < 750 km)</li>



## Evidence for viscous relaxation

- More general approach: study topography power spectrum
- Power spectra for Vesta closely fits with the power law to the lowest degrees (λ < 750 km)</li>
- Ceres power spectrum deviates from the power law at λ > 270 km



# Spectral-spatial localization of topography

- Use Slepian windows to minimize spectral and spatial leakage
- Icosahedron tessellation for uniform distribution of windows



# Latitude dependence of relaxation



## Finite element model



Fu et al., 2014; Fu et al., 2017 in prep for EPSL

 Assume a density and rheology structure

## Finite element model



Fu et al., 2014; Fu et al., 2017 in prep for EPSL

- Assume a density and rheology structure
- Solve Stokes equation for an incompressible flow using deal.ii library

$$\partial_i(2\eta\dot{\varepsilon}_{ij}) - \partial_i p = -g_i \rho$$

$$\P_i u_i = 0$$

## Finite element model



Fu et al., 2014; Fu et al., 2017 in prep for EPSL

- Assume a density and rheology structure
- Solve Stokes equation for an incompressible flow using deal.ii library

$$\partial_i(2\eta\dot{\varepsilon}_{ij}) - \partial_i p = -g_i \rho$$

$$\P_i u_i = 0$$

 Compute the evolution of the outer surface power spectrum

# Example of a FE modeling run





# Finite element modeling results



# Two-layer model

 Simplest model to interpret the gravitytopography data



Using Tricarico 2014 for computing hydrostatic equilibrium

# Two-layer model

- Simplest model to interpret the gravitytopography data
- Only 5 parameters: two densities, two radii and rotation rate



Using Tricarico 2014 for computing hydrostatic equilibrium

# **Two-layer model**

- Simplest model to interpret the gravitytopography data
- Only 5 parameters: two densities, two radii and rotation rate
- Yields  $C/Ma^2 = 0.373$  $C/M(R_{vol})^2 = 0.392$



Using Tricarico 2014 for computing hydrostatic equilibrium

# Isostatic model

## $Z_n$ - gravity-topography admittance

$$Z_n = \frac{S_{gt}}{S_{tt}}$$

## Isostatic model

## $Z_n$ - gravity-topography admittance

$$Z_n = \frac{S_{gt}}{S_{tt}}$$

## Linear two-layer hydrostatic model

$$Z_n = \frac{GM}{R^3} \frac{3(n+1)}{2n+1} \frac{\Gamma_{crust}}{\Gamma_{mean}}$$



#### Isostatic model

#### $Z_n$ - gravity-topography admittance

$$Z_n = \frac{S_{gt}}{S_{tt}}$$

#### Linear two-layer hydrostatic model

$$Z_n = \frac{GM}{R^3} \frac{3(n+1)}{2n+1} \frac{\Gamma_{crust}}{\Gamma_{mean}}$$

#### Linear isostatic model

$$Z_{n} = \frac{GM}{R^{3}} \frac{3(n+1)}{2n+1} \frac{\Gamma_{crust}}{\Gamma_{mean}} \hat{\mathbf{e}}^{1} - \mathbf{e}^{1} - \frac{D_{comp}}{R} \ddot{\mathbf{e}}^{0} \hat{\mathbf{e}}^{1}$$



D<sub>comp</sub>- depth of compensation





### **Bouguer anomaly**



up to n = 11Ermakov et al., in prep for JGR

### **Bouguer anomaly**



up to *n* = 11 Ermakov et al., in prep for JGR

# Isostatic anomaly



up to n = 11Ermakov et al., in prep for JGR

# Occator crater



# Occator crater



# Occator crater



#### Occator isostatic anomaly (n > 2)





Occator provides a linkage between internal structure and surface observations

# Internal activity?



45

# Internal activity?



correlation

# Internal activity?



## Big basins

#### Kerwan



#### **Urvara and Yalode**



- Big basins are subcompensated
  - Localized volatile enrichment
  - Increased impact induced porosity

#### **Ahuna Mons**





Image credit: DLR

- Ahuna Mons is proposed to be a region of cryovolcanic activity
- Having a strong isostatic (and Bouguer) anomales, the nature of Ahuna Mons activity should be different from Occator

#### Summary

- Weakly differentiated based on gravity/topography data
- Temperature (not compositional) gradient governs rheology
  - topography is isostatically compensated
- Low core density implies strong hydration (2400 kg/m³)
  - late accretion

OR

- early efficient heat transfer due to hydrothermal circulation
- Early formation of subsurface ocean
- No ice-dominated shell at present day